Section 2.2 Examples of vector spaces
In this section we list some examples of vector spaces. More examples will be discussed in the class. In most of the instances the checking is left to the reader.
Example 2.2.2. (\(n\)-dimensional vector space over a field).
\begin{equation*}
F^n=\{(x_1,x_2,\ldots,x_n):x_i\in F\}.
\end{equation*}
We consider \(F^n\) as an abelian group by componentwise addition. We make \(F^n\) as an \(F\) vector space by defining scalar multiplication as follows:
\begin{equation*}
\alpha\cdot(x_1,x_2,\ldots,x_n)=(\alpha x_1,\alpha x_2,\ldots,\alpha x_n).
\end{equation*}
Note that \(\alpha x_i\) is the multiplication in the field \(F\) while \(\alpha\cdot(x_1,x_2,\ldots,x_n)\) is a scalar multiplication. Check that with this scalar multiplication \(F^n\) is an \(F\) vector space.Example 2.2.3. (Vector space of \(\R\)-linear maps over \(\R\)).
\begin{equation*}
\ell_\alpha\colon\R\to\R
\end{equation*}
defined by \(\ell(x)=\alpha x\) for \(x\in\R\text{.}\) Consider
\begin{equation*}
\End_{\R}(\R)=\{\ell_\alpha :\alpha\in\R\}.
\end{equation*}
Addition of functions give additive structure on \(\End_{\R}(\R)\text{.}\) We may define scalar multiplication by
\begin{equation*}
a\cdot\ell_\alpha=\ell_{a\alpha}\quad\quad\text{for}\quad a,\alpha\in\R.
\end{equation*}
Example 2.2.4. (Vector space of matrices).
\begin{equation*}
\alpha\cdot\begin{pmatrix}a_{11}\amp a_{12}\amp\cdots\amp a_{1n}\\a_{21}\amp a_{22}\amp\cdots\amp a_{2n}\\\vdots\amp\vdots\amp\ddots\amp\vdots\\a_{m1}\amp a_{m2}\amp\cdots\amp a_{mn}\end{pmatrix}=\begin{pmatrix}\alpha a_{11}\amp \alpha a_{12}\amp\cdots\amp \alpha a_{1n}\\\alpha a_{21}\amp \alpha a_{22}\amp\cdots\amp \alpha a_{2n}\\\vdots\amp\vdots\amp\ddots\amp\vdots\\\alpha a_{m1}\amp \alpha a_{m2}\amp\cdots\amp \alpha a_{mn}\end{pmatrix}\quad\text{for}\quad\alpha,a_{ij}\in F.
\end{equation*}
Example 2.2.5. (A ring containing a field).
Example 2.2.6. (Direct sum of two vector spaces).
\begin{equation*}
V\oplus W=\{(v,w):v\in V\text{ and }w\in W\}.
\end{equation*}
Additive structure is defined by
\begin{equation*}
(v_1,w_1)+(v_2,w_2)=(v_1+v_2,w_1+w_2),
\end{equation*}
where \(v_i\in V\) and \(w_i\in W\text{.}\) The addition \(v_1+v_2\) (resp., \(w_1+w_2\)) is defined by using additive structure in \(V\) (resp., \(W\)). We define scalar multiplication as follows:
\begin{equation*}
\alpha\cdot(v,w)=(\alpha v,\alpha w)\quad\text{for}\quad\alpha\in F\text{ and }v\in V\text{ and }w\in W.
\end{equation*}
Here, \(\alpha v\) (resp., \(\alpha w\)) is the scalar multiplication defined for \(V\) (resp., \(W\)). Check that \(V\oplus W\) is a vector space over \(F\text{.}\)Example 2.2.7. (Product of vector spaces).
- \((\ldots,x_i,\ldots)+(\ldots,y_i,\ldots)=(\ldots, x_i+y_i,\ldots)\text{;}\) component wise addition.
- For any \(\alpha\in F\) the scalar multiplication is define by\begin{equation*} \alpha\cdot(\ldots,x_i,\ldots)=(\ldots,\alpha x_i,\ldots). \end{equation*}
Example 2.2.8. (Square classes of rationals).
\begin{equation*}
\mathbb{F}_2\times V\to V
\end{equation*}
given by
\begin{equation*}
\big(0,r(\Q^\times)^2\big)\mapsto 1(\Q^\times)^2\quad\text{and}\quad \big(1,r(\Q^\times)^2\big)\mapsto r(\Q^\times)^2.
\end{equation*}
The scalar multiplication by \(1\in\mathbb{F}_2\) is decided by one of the axioms of vector space, viz., \(1\cdot v=v\text{.}\) The scalar multiplication \(0\in\mathbb{F}_2\) is a consequence of the vector space axioms: \(0\cdot v=0\in V\) (\(0\in V\) is \(1\left(\Q^\times\right)\)).