Skip to main content

Section 6.4 Examples

We give a few examples of quotient spaces and certain applications of the first isomorphism theorem.
Let \(U,V,\) and \(W\) be vector spaces over a field \(F\text{.}\) Then
\begin{equation*} \Hom_F\big(U\bigoplus V,W\big)\simeq\Hom_F(U,W)\bigoplus\Hom_F(V,W). \end{equation*}
Let \(V\) be a vector space over a field \(F\) and \(W_i\leq V\) (\(i\) is in some indexing set \(I\)) be subspace of \(V\text{.}\) Then,
\begin{equation*} V\big/\bigcap_{i\in I}W_i\text{ is isomorphic to a subspace of }\prod_{i\in I}\big(V/W_i\big). \end{equation*}
For each \(i\in I\) consider the natural projection \(\pi_i\colon V\to V/W_i\) (see Definition 6.2.1). Define \(\pi\colon V\to\prod_{i\in I}\big(V/W_i\big)\) by
\begin{equation*} v\mapsto (\ldots,v+W_i,\ldots) \end{equation*}
The verification that this map is \(F\)-linear is left to the reader. The kernel of \(\pi\) is
\begin{align*} \ker(\pi)\amp=\{v\in V:v+W_i=0+W_i\text{ for each }i\in I\}\\ \amp=\{v\in V:v\in W_i\text{ for each }i\in I\}\\ \amp=\bigcap_{i\in I}W_i \end{align*}
By Theorem 6.3.2, \(V\big/\bigcap_{i\in I}W_i\) is isomorphic to \(\Im(\pi)\text{.}\) Hence the result. This shows that the following is an exact sequence.
\begin{equation} 0\to \bigcap_{i\in I}W_i\to V\to\prod_{i\in I}\big(V/W_i\big).\tag{6.4.1} \end{equation}
Let \(X,Y\leq V\) be subspaces of a vector space \(V\) over a field \(F\text{.}\) Consider natural projections (see Definition 6.2.1).
\begin{equation*} p\colon V/X\to V/(X+Y)\quad\text{and}\quad q\colon V/Y\to V/(X+Y) \end{equation*}
Consider the compositions
\begin{equation*} r\colon V/(X\cap Y)\to V/X\to (V/X)\bigoplus (V/Y) \end{equation*}
and
\begin{equation*} s\colon V/(X\cap Y)\to V/Y\to (V/X)\bigoplus (V/Y). \end{equation*}
Let \(t\colon V/(X\cap Y)\to(V/X)\bigoplus (V/Y)\) be such that \(t=r+s\text{.}\) We show that
\begin{equation*} p-q\colon (V/X)\bigoplus (V/Y)\to V/(X+Y) \end{equation*}
is surjective, \(t\colon V/(X\cap Y)\to (V/X)\bigoplus (V/Y)\) is injective, and \(\Im(t)=\ker(p-q)\text{.}\) In other words, we show that the following is an short exact sequence.
\begin{equation} 0\to V/(X\cap Y)\xrightarrow{t}(V/X)\bigoplus (V/Y)\xrightarrow{p-q} V/(X+Y)\to 0\tag{6.4.2} \end{equation}
Indeed, the injectivity is a part of Example 6.4.2. The surjectivity of \(p-q\) is left to the reader. We have
\begin{align*} (p-q)\circ t\left(v+(X\cap Y)\right)\amp=(p-q)\left(v+X,v+Y\right)=0 \end{align*}
Hence, \(\Im(t)\leq\ker(p-q)\text{.}\)
Now suppose that \((p-q)(v+X,v^\prime+Y)=0\text{,}\) i.e., \(v+(X+Y)=v^\prime+(X+Y)\text{.}\) Therefore there exists \(x\in X\) and \(y\in Y\) such that \(v-v^\prime=x+y\text{.}\) Hence,
\begin{equation*} v-x=v^\prime+y. \end{equation*}
Put \(w=v-x=v^\prime+y\text{.}\) Thus,
\begin{align*} r\left(w+(X\cap Y)\right)\amp=r\left(v-x+(X\cap Y)\right)\\ \amp=\left((v-x)+X,0\right)\\ \amp=(v+X,0) \end{align*}
Similarly,
\begin{align*} s\left(w+(X\cap Y)\right)\amp=r\left(v^\prime-y+(X\cap Y)\right)\\ \amp=\left(0,(v^\prime+y)+Y\right)\\ \amp=(0,v^\prime+Y) \end{align*}
In particular,
\begin{equation*} (r+s)\left(w+(X\cap Y)\right)=t\left(w+(X\cap Y)\right)=(v+X,v^\prime+Y)\text{.} \end{equation*}
Hence, \(\ker(p-q)\leq\Im(t)\) and the result is proved.
Let \(V\) be a vector space over a field \(F\text{.}\) Suppose that \(W_1,W_2\leq V\) be subspaces of \(V\text{.}\) We have the following isomorphism.
\begin{equation*} W_1\big/(W_1\cap W_2)\simeq (W_1+W_2)/W_2. \end{equation*}