Definition 8.2.1. (Jordan form of a matrix).
A matrix \(A\in M_n(\C)\) is said to be in the Jordan form if \(A\) is similar to the following matrix.
\begin{equation}
J=\begin{pmatrix}J_{\lambda_1}\amp\amp\amp\\\amp J_{\lambda_2}\amp\amp\\\amp\amp\ddots\amp\\\amp\amp\amp J_{\lambda_r}\end{pmatrix}\tag{8.2.1}
\end{equation}
where \(\lambda_i\) are eigenvalues of \(A\text{,}\) \(J_{\lambda_i}\) is the Jordan block corresponding to \(\lambda_i\) of size \(k_i\) (see Definition 7.5.7), and \(k_1+k_2+\cdots+k_r=n\text{.}\)