Skip to main content ☰ Contents You! < Prev ^ Up Next > \(\newcommand{\R}{\mathbb R}
\def\C{\mathbb{C}}
\def\Q{\mathbb{Q}}
\def\N{\mathbb{N}}
\def\Z{\mathbb{Z}}
\def\ev{\mathrm{ev}}
\def\Im{\mathrm{Im}}
\def\End{\mathrm{End}}
\def\Aut{\mathrm{Aut}}
\def\Hom{\mathrm{Hom}}
\def\Iso{\mathrm{Iso}}
\def\GL{\mathrm{GL}}
\def\ker{\mathrm{ker }}
\def\Span{\mathrm{Span}}
\def\tr{\mathrm{tr}}
\newcommand{\unit}{1\!\!1}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 3.2 Exercises
Exercise Group.
In each of the following determine whether a given subset \(S\) is linearly dependent or independent.
1. Consider \(V=\R^2\) as a vector space over \(\R\) and \(S=\{(1,1),(1,-1)\}\text{.}\) 2. Consider \(V=\R^3\) as a vector space over \(\R\text{,}\) and \(S=\{(1,1,1),(2,1,1),(-1,1,-1),(7,7,7)\}\text{.}\) 3. Consider the set of \(2\times2\) matrices over \(\C\text{,}\) \(M_{2}(\C)\) as a vector space over \(\C\text{,}\) and
\begin{equation*}
S=\bigg\{\begin{pmatrix}1\amp 0\\0\amp 0\end{pmatrix},\begin{pmatrix}0\amp 1\\0\amp 0\end{pmatrix},\begin{pmatrix}0\amp 0\\1\amp 0\end{pmatrix},\begin{pmatrix}0\amp 0\\0\amp 1\end{pmatrix}\bigg\}\text{.}
\end{equation*}
4. Consider \(V\) to be the vector space over a field \(F\) of all polynomials in variable \(x\) of degree at most \(n\text{,}\) and \(S=\{1,x,x^2,\ldots,x^n\}\text{.}\) 5. Consider the vector space \(V=\End_{\R}(\R)\) over \(\R\) (refer to Example 2.2.3 ), and \(S=\{\ell_{\pi},\ell_{3}\}\text{.}\)