Skip to main content ☰ Contents You! < Prev ^ Up Next > \(\newcommand{\R}{\mathbb R}
\def\C{\mathbb{C}}
\def\Q{\mathbb{Q}}
\def\N{\mathbb{N}}
\def\Z{\mathbb{Z}}
\def\ev{\mathrm{ev}}
\def\Im{\mathrm{Im}}
\def\End{\mathrm{End}}
\def\Aut{\mathrm{Aut}}
\def\Hom{\mathrm{Hom}}
\def\Iso{\mathrm{Iso}}
\def\GL{\mathrm{GL}}
\def\ker{\mathrm{ker }}
\def\Span{\mathrm{Span}}
\def\tr{\mathrm{tr}}
\newcommand{\unit}{1\!\!1}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 3.5 Exercises
Exercise Group.
In the following exercises find a basis and the dimension of vector space.
1.
\(\C\) over \(\R\text{.}\) 2.
\(F^n\) over a field \(F\) (refer to Example 2.2.2 )3.
\(\End_{\R}(\R)\) over \(\R\) (refer to Example 2.2.3 ).4.
\(M_{m\times n}(F)\) over a field \(F\text{.}\) 5. Vector space of all polynomials in one variable of degree at most \(n\) over a field \(F\text{.}\)
Exercise Group.
In the following exercises assume that \(V\) is a finite-dimensional vector space over a field \(F\text{.}\)
6. Let \(\{v_1,v_2,\ldots,v_n\}\) be a basis of \(V\text{.}\) Show that vectors
\begin{equation*}
w_i=\sum_{j=1}^{n}\alpha_{ij}v_j \quad \text{for } 1\leq i\leq m
\end{equation*}
are linearly dependent if and only if
\begin{equation*}
\begin{pmatrix}\alpha_{11}\amp\alpha_{21}\amp\cdots\amp\alpha_{m1}\\
\alpha_{12}\amp\alpha_{22}\amp\cdots\amp\alpha_{m2}\\
\vdots\amp\vdots\amp\ddots\amp\vdots\\
\alpha_{1n}\amp\alpha_{2n}\amp\cdots\amp\alpha_{mn}\\\end{pmatrix}X=0
\end{equation*}
has a nontrivial solution.7. Show that \(\R\) considered as a vector space over \(\Q\) is not finite-dimensional.8. If \(W<V\) is a proper subspace then, \(\dim_FW <\dim_FV\text{.}\) 9. Determine all \(1\) -dimensional subspaces of \(\R^2\text{.}\) 10. Let \(p\) a prime, and let \(\mathbb{F}_p\) be the field with \(p\) elements. Show the cardinality of a finite-dimensional vector space over \(\mathbb{F}_p\) is finite.11. Let \(V\) be a vector space over a field \(F\) with a basis \(\{v_1,v_2,\ldots,v_n\}\text{.}\) Show that every \(v\in V\) can be written uniquely as a linear combination of \(v_1,v_2,\ldots,v_n\text{.}\)