Skip to main content

Section A.2 Determinants

In this section we recall a definition and some properties of determinant of a square matrix. Throughout this section we assume that \(F\) is a field.
Let \(S_n\) (\(n\geq 2\)) be the permutation/symmetric group. There is a group homomorphism \(sgn\colon S_n\to\{1,-1\}\) defined by mapping even permutations to \(1\) and mapping odd permutations to \(-1\text{.}\)

Definition A.2.1. (Determinant of a matrix).

Let \(A=(a_{ij})\in M_n(F)\text{.}\) The determinant of \(A\) is defined to be
\begin{equation*} \det(A)=\sum_{\sigma\in S_n}sgn(\sigma)\; a_{1\sigma(1)}\cdots a_{i\sigma(i)}\cdots a_{n\sigma(n)}\in F. \end{equation*}
Properties of the determinant. Assume that \(A=(a_{ij})\in M_n(F)\text{.}\)
  1. Row linearity. Let \(A_i=(a_{i1},a_{i2},\ldots,a_{in})\) be the \(i\)-th row of \(A\text{.}\) For \(\beta\in F\) we let \(\beta A_i=(\beta a_{i1},\beta a_{i2},\ldots,\beta a_{in})\text{.}\) For any \(B\in M_{1\times n}(F)\) and any \(\beta,\gamma\in F\) and any \(i\in\{1,2,\ldots,n\}\) we get the following.
    \begin{equation*} \det\begin{pmatrix}A_1\\A_2\\\vdots\\A_{i-1}\\\beta A_i+\gamma B\\A_{i+1}\\\vdots\\A_n\end{pmatrix}=\beta\det\begin{pmatrix}A_1\\A_2\\\vdots\\A_{i-1}\\A_i\\A_{i+1}\\\vdots\\A_n\end{pmatrix}+\gamma\det\begin{pmatrix}A_1\\A_2\\\vdots\\A_{i-1}\\B\\A_{i+1}\\\vdots\\A_n\end{pmatrix} \end{equation*}
  2. For \(A\in M_n(F)\) and any \(\beta\in F\text{,}\) \(\det(\beta A)=\beta^n\det(A)\text{.}\)
  3. Row rearrangement. Let \(\sigma\in S_n\) and \(A^\prime\) be the matrix such that the \(i\)-th row of \(A^\prime\) is the \(\sigma(i)\)-th row of \(A\text{.}\) Then
    \begin{equation*} \det(A^\prime)=sgn(\sigma)\det(A). \end{equation*}
  4. Alternating. If any two rows of \(A\in M_n(F)\) are the same then \(\det(A)=0\text{.}\)
  5. Transpose. For any \(A\in M_n(F)\text{,}\)
    \begin{equation*} \det(A^t)=\det(A). \end{equation*}
  6. Triangular matrices. If \(A=(a_{ij})\in M_n(F)\) is an upper triangular (resp., lower triangular) matrix, i.e., \(a_{ij}=0\) for \(i>j\) (resp., \(a_{ij}=0\) for \(i<j\)) then
    \begin{equation*} \det(A)=a_{11}a_{22}\cdots a_{nn}. \end{equation*}
  7. Block form. Let \(r\in\{1,2,\ldots,n-1\}\text{.}\) Let \(B\in M_r(F)\text{,}\) \(C\in M_{r\times n-r}(F)\text{,}\) \(D\in M_{n-r}(F)\text{,}\) and \(\mathbf{0}\in M_{n-r\times r}(F)\) be the zero matrix. The determinant of
    \begin{equation*} A=\begin{pmatrix}B\amp C\\\mathbf{0}\amp D\end{pmatrix} \end{equation*}
    is given by
    \begin{equation*} \det(A)=\det(B)\cdot\det(D). \end{equation*}
    Similar result is true for lower triangular block matrices.
  8. Multiplicative property. Let \(A, B\in M_n(F)\text{.}\) We have
    \begin{equation*} \det(AB)=\det(A)\cdot\det(B). \end{equation*}