Skip to main content

Exercises 7.7 Exercises

Throughout this section we assume that \(V\) is a finite-dimensional vector space over a field \(F\) and \(T\colon V\to V\) an \(F\)-linear map.

1.

Find the characteristic polynomial of \(A=\begin{pmatrix}a\amp b\\c\amp d\end{pmatrix}\text{.}\) Show that
\begin{equation*} A^2-tr(A)A+\det(A)I_2=0\text{.} \end{equation*}

2.

Let \(A\in M_n(F)\) be an invertible matrix. Show that \(A^{-1}\) has same eigenvectors as that of \(A\text{.}\)

3.

An \(F\)-linear map \(T\) has every vector in \(V\) as an eigenvector if and only if \(T(v)=\alpha v\) for every \(v\in V\) and some fixed scalar \(\alpha\in F\text{.}\)

4.

Show that eigenvectors corresponding to distinct eigenvalues are linearly independent.

5.

Suppose that \(A\in M_n(F)\) is of the rank \(r<n\text{.}\) Show that \(0\) is an eigenvalue of \(A\text{.}\)

Exercise Group.

Find the characteristic and the minimal polynomial of linear transformations corresponding to the following matrices.

6.

\(\begin{pmatrix}0\amp 1\\0\amp 0\end{pmatrix}\in M_2(\R)\)

7.

\(\begin{pmatrix}0\amp -1\\1\amp 1\end{pmatrix}\in M_2(\R)\)

8.

\(\begin{pmatrix}0\amp 0\amp -1\\1\amp 0\amp -1\\0\amp 1\amp -1\end{pmatrix}\in M_3(\R)\)

9.

\(\begin{pmatrix}1\amp 1\amp 1\\1\amp 1\amp 1\\2\amp 2\amp 2\end{pmatrix}\in M_3(\R)\)

10.

The matrix corresponding to a linear map \(T\colon\R^4\to\R^4\) given by
\begin{equation*} e_1\mapsto e_2,\;e_2\mapsto e_3,\;e_3\mapsto e_4,\;e_4\mapsto e_1. \end{equation*}

Exercise Group.

Find the minimal polynomial, eigenvalues, and eigenvectors for the following linear maps/matrices. Furthermore, if \(\lambda\) is an eigenvalue then find a basis and the dimension of \(\ker(T-\lambda\unit_V)\) (resp., \(\ker(A-\lambda I_n))\text{.}\)

11.

\(A=\begin{pmatrix}0\amp 0\\1\amp 0\end{pmatrix}\in M_2(\C)\)

12.

\(A=\begin{pmatrix}\lambda\amp 1\amp 0\\0\amp\lambda\amp 0\\0\amp 0\amp 2\end{pmatrix}\in M_3(\R)\)

13.

\(A=\begin{pmatrix}1\amp 1\amp 1\\1\amp 1\amp 1\\1\amp 1\amp 1\end{pmatrix}\in M_3(\C)\)

14.

The differentiation operator on polynomials in one variable over \(\C\) of degree at most \(4\text{.}\)

15.

The transpose map \(T\colon M_2(\R)\to M_2(\R)\) given by \(A\mapsto A^t\text{.}\)

Exercise Group.

Find out whether the following matrices are similar to diagonal matrices over a given field.

16.

\(\begin{pmatrix}0\amp 1\\0\amp 0\end{pmatrix}\in M_2(\mathbb{F}_2)\text{,}\) where \(\mathbb{F}_2\) is a field with two elements.

17.

\(\begin{pmatrix}2\amp 0\\1\amp 2\end{pmatrix}\in M_2(\R)\)

18.

\(\begin{pmatrix}0\amp -1\amp 0\\-1\amp 3\amp -1\\-4\amp 13\amp -4\end{pmatrix}\in M_3(\R)\)

19.

\(\begin{pmatrix}1\amp 1\amp 1\amp 1\\1\amp 1\amp -1\amp -1\\1\amp -1\amp 1\amp -1\\1\amp -1\amp -1\amp 1\end{pmatrix}\in M_4(\R)\)

20.

Let \(A\) be the matrix of the following linear map with respect to the standard ordered basis.
\begin{equation*} T\colon F^n\to F^n\quad\text{given by}\; e_i\mapsto e_{i+1}\;\text{for}\;1\leq i\leq n-1\;\text{and}\;e_n\mapsto 0. \end{equation*}

21.

Find \(\begin{pmatrix}1\amp 1\\-1\amp 3\end{pmatrix}^{20}\in M_2(\C)\text{.}\)