Section 9.4 Submodules
Convention 9.4.2.
A submodule \(N\) of a module \(M\) is denoted by \(N\leq M\text{.}\)Definition 9.4.3. (Submodule generated by a subset).
Let \(M\) be a left \(R\)-module, and let \(X\) be a subset of \(M\text{.}\) The \(R\)-submodule generated by \(X\) is
\begin{equation*}
\langle X\rangle=\left\{\sum_{i=1}^nr_ix_i:x_i\in M,r_i\in R\;\text{and}\;n\in\N\right\}.
\end{equation*}
If \(X\) is a finite set, say \(X=\{x_1,\ldots,x_n\}\) then we write the \(R\)-module generated by \(X\) as
\begin{equation*}
Rx_1+Rx_2+\cdots+Rx_n
\end{equation*}
and we call such an \(R\)-module a finitely generated \(R\)-module.
In particular, if \(X={x}\) then the finitely generated \(R\)-module is called principal \(R\)-module or cyclic \(R\)-module.
Definition 9.4.4.
Let \(M\) be a left \(R\)-module. An element \(m\in M\) is said to be an \(R\)-linear combination of \(x_1,\ldots,x_n\in M\) if
\begin{equation*}
m=r\cdot x_1+\cdots+r\cdot x_n.
\end{equation*}
Example 9.4.5. Trivial submodule.
Example 9.4.6. (Vector subspaces are submodules).
Example 9.4.7. (Subgroups of abelian groups as submodules).
Example 9.4.8. (Ideals as submodules).
Example 9.4.9. (Annihilator of a module).
\begin{equation*}
{\rm Ann}_R(M)=\{r\in R:r\cdot m=0\;\text{for all}\;m\in M\}
\end{equation*}
being a two-sided ideal of \(R\) is a left \(R\)-submodule of \(R\text{.}\) Consider \(\Z/n\Z\) as a \(\Z\)-module. In this case \(\Ann_{\Z}(\Z/n\Z)=n\Z\text{.}\)
Example 9.4.10. (Invariant subspaces).
Assume that \(W\) is an \(F[X]\)-submodule of \(V\text{.}\) First observe that \(W\) is also an \(F\)-subspace of \(V\text{.}\) Indeed, under \(F[X]\)-module structure any constant polynomial \(a\in F[X]\) acts on \(w\in W\) by the following way:
\begin{equation*}
(a,w)\mapsto a\unit_V(w)=a\cdot w\in W,
\end{equation*}
where \(a\cdot w\) is the scalar multiplication via the vector space structure. For any \(w\in W\) we have \((X,w)\mapsto T(w)\in W\) and hence \(W\) is a \(T\)-invariant subspace of \(V\text{.}\)
Conversely assume that \(W\) is a \(T\)-invariant subspace of \(V\text{.}\) Then for any \(n\in\N\) and any \(a_n\in F\) we have \(W\) is \(a_nT^n\)-invariant subspace of \(V\text{.}\) Therefore, for any \(w\in W\) and any \(a_0+a_X+\cdots+a_nX^n\in F[X]\text{,}\) we get that
\begin{equation*}
\left(a_0+a_1X+\cdots+a_nT^n,w\right)\mapsto a_0\unit_V(w)+a_1T(w)+\cdots+a_nT^n(w)\in W
\end{equation*}
Hence \(W\) is an \(F[X]\)-submodule.
Definition 9.4.11. (Proper submodule and non-trivial submodule).
A left \(R\)-submodule \(N\leq M\) is said to be proper if \(N\neq M\) and \(N\) is said to be non-trivial if \(N\neq\{0\}\text{.}\)Definition 9.4.12. (Simple module).
Let \(R\) be a ring and let \(M\) be an \(R\)-module. We say that \(M\) is simple module if \(M\) has no proper non-trivial submodule.Lemma 9.4.13.
If \(M\) is a simple left \(R\)-module then it is a cyclic module.Proof.
Example 9.4.14. (Simple abelian groups).
Example 9.4.15. (Vector space as an \(\End_F(V)\)-module is simple).
In view of Lemma 9.4.13 it is enough to show that given any \(v,w\in V\) with \(v\neq 0\) there exists \(T\in\End_F(V)\) such that \(T(v)=w\text{.}\) Since \(v\neq 0\) we can extend \(\{v\}\) to a basis of \(V\text{,}\) say \(\{v,v_1,\ldots,v_{n-1}\}\text{.}\) For a set \(\{w,w_1,\ldots,w_{n-1}\}\subset V\) we define a map \(T(v)=w\) and \(T(v_i)=w_i\text{,}\) and we extend \(T\) linearly. Thus \(T\in\End_F(V)\) is a required map.
