Skip to main content

Section 9.5 Module homomorphisms

Definition 9.5.1.

Let \(R\) be a ring. Let \(M\) and \(N\) are left \(R\)-modules. A map \(f\colon M\to N\) is said to be an \(R\)-module homomorphism if for any \(m,m^\prime\in M\) and any \(r\in R\) we have
\begin{equation*} f(m+m^\prime)=f(m)+f(m^\prime)\quad\text{and}\quad f(r\cdot m)=r\cdot f(m). \end{equation*}

Definition 9.5.2.

Let \(R\) be a ring, and let \(f\colon M\to N\) be an \(R\)-module homomorphism. The kernel of \(f\) is
\begin{equation*} \ker(f)=\{m\in M:f(m)=0\} \end{equation*}
and the image of \(f\) is
\begin{equation*} {\rm Im}(f)=\{f(m)\in N:m\in M\}. \end{equation*}

Remark 9.5.3.

It is easy to verify that \(\ker(f)\) and \({\rm Im}(f)\) are \(R\)-submodules of \(M\) and \(N\text{,}\) respectively.
Let \(A\) be a commutative ring, and let \(M\) be a left \(A\)-module. We fix \(a\in A\) and consider the map \(\ell_a\colon M\to M\) defined by
\begin{equation*} m\mapsto a\cdot m \end{equation*}
The map \(\ell_a\) is an \(A\)-module homomorphism.
Let \(V\) be a finite-dimensional vector space over a field \(F\text{.}\) We fix an \(F\)-linear endomorphism of \(V\text{,}\) say \(T\text{.}\) We consider \(V\) as a left \(F[X]\)-module via the following scalar multiplication (refer to Example 9.2.4):
\begin{equation*} F[X]\times V\to V;\quad f(X)\cdot v=f(T)(v) \end{equation*}
Consider the following map.
\begin{equation*} \varphi\colon V\to V\quad\text{defined by}\quad v\mapsto T(v). \end{equation*}
It is left to the reader to verify that \(\varphi\) is an \(F[X]\)-module.
A \(\Z\)-module homomorphism is same as the group homomorphism.
Let \(R\) be a ring and let \(M\) be a left \(R\)-module. Fix an element \(m\in M\text{.}\) The map \(f_m\colon R\to M\) define by
\begin{equation*} r\mapsto r\cdot m \end{equation*}
is an \(R\)-module homomorphism. The kernel of this map is called the annihilator of \(m\) and it is denoted by \({\rm Ann}_R(m)\text{.}\) Thus
\begin{equation*} {\rm Ann}_R(m)=\{r\in R:r\cdot m=0\} \end{equation*}
is a left ideal of \(R\text{.}\)
Let \(R\) be a ring and let \(M,N\) be left \(R\)-modules with \(N\subset M\text{.}\) Then \(N\) is a submodule of \(M\) if and only if inclusion \(N\hookrightarrow M\) is an \(R\)-module homomorphism.

Definition 9.5.10.

Let \(R\) be a ring and let \(M,N\) be left \(R\)-modules. An \(R\)-module homomorphism \(f\colon M\to N\) is said to be an \(R\)-isomorphism if there exists an \(R\)-module homomorphism \(g\colon N\to M\) such that \(f\circ g=Id_N\) and \(g\circ f=Id_M\text{.}\) If there is an \(R\)-isomorphism between \(M\) and \(N\) then we say that0 \(M\) isomorphic to \(N\text{,}\) and write \(M\simeq N\text{.}\)
Consider the matrix ring over a field \(F\text{,}\) \(M_2(F)\text{.}\) Then
\begin{equation*} M=\left\{\begin{pmatrix}a\amp 0\\b\amp 0\end{pmatrix}:a,b\in F\right\}\quad\text{and}\quad N=\left\{\begin{pmatrix}0\amp a\\0\amp b\end{pmatrix}:a,b\in F\right\} \end{equation*}
are left ideals of \(M_2(F)\text{,}\) and hence left \(M_2(F)\)-submodules of \(M_2(F)\text{.}\) We define a map
\begin{equation*} f\colon M\to N\quad\text{by}\quad \begin{pmatrix}a\amp 0\\b\amp 0\end{pmatrix}\mapsto\begin{pmatrix}0\amp a\\0\amp b\end{pmatrix}. \end{equation*}
It is left to the reader to check that \(f\) is an \(M_2(F)\)-module homomorphism. Furthermore, the map
\begin{equation*} g\colon N\to M\quad\text{defined by}\quad\begin{pmatrix}0\amp a\\0\amp b\end{pmatrix}\mapsto\begin{pmatrix}a\amp 0\\b\amp 0\end{pmatrix} \end{equation*}
is also an \(M_2(F)\)-module homomorphism with
\begin{equation*} f\circ g=\unit_N\quad\text{and}\quad g\circ f=\unit_M. \end{equation*}
Thus \(M_2(F)\)-modules \(M,N\) are isomorphic. Furthermore we show that \(M\) is a simple left \(M_2(F)\)-module. By a similar reasoning \(N\) can be shown as a simple left \(M_2(F)\)-mdoule. Suppose that \(m= \begin{pmatrix}a\amp 0\\b\amp 0\end{pmatrix}\in M\) is a nonzero element and \(m^\prime=\begin{pmatrix}c\amp 0\\d\amp 0\end{pmatrix}\in M\) be an arbitrary element. We show that there exists \(X=\begin{pmatrix}x\amp y\\z\amp w\end{pmatrix}\in M_2(F)\) such that \(Xm=m^\prime\text{.}\) Indeed, we get the following equations from \(Xm=m^\prime\text{.}\)
\begin{equation*} ax+by=c\quad\text{and}\quad az+bw=d. \end{equation*}
This can be solved to obtain \(x,y,z,\) and \(w\text{.}\) Hence, \(M\) is a simple left \(M_2(F)\)-module. In other words, \(M\) is a minimal left ideal of \(M_2(F)\text{.}\)