Skip to main content

Section 8.2 Eisenstein integer

Throughout this section we let \(\omega=\frac{-1}{2}+\frac{\sqrt{-3}}{2}\text{.}\) This is a primitive \(3\)-rd root of unity and it satisfies the following quadratic irreducible polynomial:
\begin{equation} x^2+x+1,\quad\text{i.e.,}\quad\omega^2+\omega+1=0.\tag{8.2.1} \end{equation}

Definition 8.2.1. (Eisenstein integers).

The ring \(\Z[\omega]=\{a+b\omega:a,b\in\Z\}\) is called the ring of Eisenstein integers.
The set \(\Z[\omega]\) is indeed a ring. You may need to use the fact that \(\omega^2+\omega+1=0\text{.}\)
By completing the square we get
\begin{equation*} a^2+b^2-ab=\left(a-\frac{b}{2}\right)^2+\frac{3}{4}b^2. \end{equation*}
This observation may be used to get a proof of the result.
Suppose that \(N(a+b\omega)=1\text{,}\) i.e., \(\left(a-\frac{b}{2}\right)^2+\frac{3}{4}b^2=1\text{.}\) Hence \(|b|\leq 1\text{,}\) i.e., \(b=0,\pm 1\text{.}\) Thus we should have
\begin{equation*} (a,b)=\{(\pm 1,0),(0,\pm 1),(-1,-1),(1,1)\} \end{equation*}
and corresponding Eisenstein integers are
\begin{equation*} \{\pm 1,\pm\omega,-1-\omega,1+\omega\} \end{equation*}
Every element in the above set is a unit (see equation (8.2.1)). Furthermore, \(\pm(1+\omega)=\mp\omega^2\) by equation (8.2.1).