Skip to main content

Section 9.1 Definition

We generalize the concept of a vector space over a field.

Definition 9.1.1. (Left Module).

Let \(R\) be a ring. An abelian group \((M,+)\) is said to be a left \(R\)-module if there is a map ‘scalar multiplication’
\begin{equation*} R\times M\to M\quad\text{denoted by}\quad(r,m)\mapsto r\cdot m \end{equation*}
satisfying the following conditions:
  1. For any \(r\in R\) and any \(m,n\in M\)
    \begin{equation*} r\cdot(m+n)=r\cdot m+r\cdot n \end{equation*}
  2. For any \(r,s\in R\) and any \(m\in M\)
    \begin{equation*} (r+s)\cdot m=r\cdot m+s\cdot m \end{equation*}
  3. For any \(r,s\in R\) and any \(m\in M\)
    \begin{equation*} (rs)\cdot m=r\cdot(s\cdot m) \end{equation*}
  4. For any \(m\in M\)
    \begin{equation*} 1_R\cdot m=m \end{equation*}

Convention 9.1.2.

A left \(R\) module \(M\) is referred to as an \(R\)-mod.
In a similar way we define a right module.

Definition 9.1.3. (Right Module).

Let \(R\) be a ring. An abelian group \((M,+)\) is said to be a right \(R\)-module if there is a map ‘scalar multiplication’
\begin{equation*} M\times R\to M\quad\text{denoted by}\quad(m,r)\mapsto m\cdot r \end{equation*}
satisfying the following conditions:
  1. For any \(r\in R\) and any \(m,n\in M\)
    \begin{equation*} (m+n)\cdot r= m\cdot r+ n\cdot r \end{equation*}
  2. For any \(r,s\in R\) and any \(m\in M\)
    \begin{equation*} m\cdot (r+s)=m\cdot r+ m\cdot s \end{equation*}
  3. For any \(r,s\in R\) and any \(m\in M\)
    \begin{equation*} m\cdot (rs)=(m\cdot r)\cdot s \end{equation*}
  4. For any \(m\in M\)
    \begin{equation*} m\cdot 1=m \end{equation*}

Convention 9.1.4.

A right \(R\) module \(M\) is referred as mod-\(R\text{.}\)
Following properties follows immediately from the definition of \(R\)-module.