Skip to main content

Section 4.9 Polynomial reducible over every \(\mathbb{F}_p\)

In this section we give an example of an irreducible polynomial over \(\Q\) which is reducible over \(\mathbb{F}_p\) for any prime \(p\text{.}\)
We show that \(x^4+1\) is reducible over every \(\mathbb{F}_p\text{,}\) where \(p\) is an odd prime number. The case when \(p=2\) is left to the reader.
Since \(p\equiv 1\mod 4\) we have \(p-1\big/2\in2\N\text{.}\) By Wilson’s theorem, \(-1\equiv (p-1)!\mod p\text{.}\) Thus
\begin{align*} -1\amp\equiv (p-1)!\\ \amp\equiv \left(1\cdot 2\cdots\frac{p-1}{2}\right)\left((-1)\cdot (-2)\cdots\left(-\frac{p-1}{2}\right)\right)\\ \amp\equiv (-1)^{\frac{p-1}{2}}\left(1\cdot 2\cdots\frac{p-1}{2}\right)^2\\ \amp\equiv \left(1\cdot 2\cdots\frac{p-1}{2}\right)^2 \end{align*}
Consider the squaring map which is a group homomorphism:
\begin{equation*} \varphi\colon\mathbb{F}_p^\times\to\mathbb{F}_p^\times\quad\text{given by}\quad x\mapsto x^2. \end{equation*}
The kernel is \(\{\pm 1\}\text{.}\) Therefore, \(|{\rm Im}(\varphi)|=\tfrac{p-1}{2}\text{,}\) i.e., \([\mathbb{F}_p^\times:{\rm Im}(\varphi)]=2\text{.}\) This implies that \(a\,{\rm Im}(\varphi)\cdot b\,{\rm Im}(\varphi)=ab\,{\rm Im}(\varphi)={\rm Im}(\varphi)\text{,}\) i.e., \(ab\in{\rm Im}(\varphi)\text{,}\) i.e., \(ab\in\mathbb{F}_p^{\times 2}\text{.}\)
By Lemma 4.9.1 there exists \(a\in\mathbb{F}_p\) such that \(-1=a^2\text{.}\) Then
\begin{equation*} x^4+1=x^4-a^2=(x^2-a)(x^2+a). \end{equation*}
We make some computations.
\begin{align*} x^4+1\amp=(x^2+ax+b)(x^2+cx+d)\\ \amp=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd \end{align*}
Hence
\begin{equation*} a=-c;\;ac+b+d=0;\;ad+bc=0;\;bd=1. \end{equation*}
Therefore, \(b=d=\pm 1\text{,}\) \(c=-a\text{,}\) and \(a^2=\pm 2\text{.}\) So, if there is a factorization of \(x^4+1\) into quadratic polynomials then we necessarily have
\begin{equation} x^4+1=(x^2+ax\pm 1)(x^2-ax\pm 1)\quad\text{with}\;b=d=\pm 1, c=-a,\text{ and }a^2=\pm2\tag{4.9.1} \end{equation}
In view of Lemma 4.9.1 we assume that \(-1\) is not a square in \(\mathbb{F}_p\text{.}\) Note that if \(-1\) is not a square then either \(2\) or \(- 2\) are squares in \(\mathbb{F}_p\text{.}\) Indeed if \(-1\) and \(2\) (resp., \(-2\)) is not a square then, by Lemma 4.9.2, their product \(-2\) (resp., \(2\)) is a square. If \(\pm 2\in\mathbb{F}_p^{\times2}\text{,}\) then we have, by (4.9.1), \(x^4+1\) is reducible over \(\mathbb{F}_p^\times\text{.}\)