Definition 1.8.1. (Quaternion).
Let \(a,b\in F\) be nonzero elements. Consider a \(4\)-dimensional vector space \(Q\) over \(F\) with basis \(\{1,i,j,k\}\text{.}\) We write \(\alpha\cdot1=\alpha\) for any \(\alpha\in F\text{.}\) Thus \(Q=\{x_0+x_1i+x_2j+x_3k:x_i\in F\}\text{.}\) We make \(Q\) a ring by defining
\begin{equation}
i^2=a,\;j^2=b,\;\text{and}\; ij=-ji=k\tag{1.8.1}
\end{equation}
and
\begin{equation}
\alpha i=i\alpha,\;\alpha j=j\alpha,\;\text{and}\;\alpha k=k\alpha\quad\text{for all}\;\alpha\in F.\tag{1.8.2}
\end{equation}
Hence
\begin{equation*}
ik=i(ij)=(i^2)j=aj\quad\text{and}\quad jk=j(ij)=j(-ji)=-(j^2)i=-bi
\end{equation*}
and
\begin{equation*}
ki=(ij)i=-(ji)i=-aj\quad\text{and}\quad kj=(ij)j=i(j^2)=bi.
\end{equation*}
Given \(x_0+x_1i+x_2j+x_3k\in Q\) and \(y_0+y_1i+y_2j+y_3k\in Q\) their multiplication is defined as follows.
\begin{align*}
(x_0+x_1i+x_2j+x_3k)(y_0+y_1i+y_2j+y_3k)\amp=(x_0y_0)+(x_0y_1)i+(x_0y_2)j+(x_0y_3)k\\
\amp\;\quad+ (x_1y_0)i+(x_1y_1) a+(x_1y_2)k+(x_1y_3)a j\\
\amp\;\quad\quad +(x_2y_0)j-(x_2y_1)k+(x_2y_2)b-(x_2y_3)bi\\
\amp\;\quad\quad\quad +(x_3y_0)k-(x_3y_1)aj+(x_3y_2)bi-(x_3y_3)ab.\\
\amp=(x_0y_0+x_1y_1a+x_2y_2b-x_3y_3ab)\\
\amp\;\quad+(x_0y_1+x_1y_0-x_2y_3b+x_3y_2b)i\\
\amp\;\quad\quad+(x_0y_2+x_1y_3a+x_2y_0-x_3y_1a)j\\
\amp\;\quad\quad\quad+(x_0y_3+x_1y_2-x_2y_1+x_3y_0)k
\end{align*}
This also shows that \(1\) is the unity of \(Q\text{,}\) and \(Q\) is an \(F\)-algebra.
The algebra \(Q\) is called a quaternion algebra over \(F\) and it is denoted by \((a,b)_F\text{.}\)
